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Purpose: To develop a new 3D generative adversarial network that is designed and 
optimized for the application of multimodal 3D neuroimaging synthesis.
Methods: We present a 3D conditional generative adversarial network (GAN) that 
uses spectral normalization and feature matching to stabilize the training process 
and ensure optimization convergence (called SC- GAN). A self- attention module was 
also added to model the relationships between widely separated image voxels. The 
performance of the network was evaluated on the data set from ADNI- 3, in which the 
proposed network was used to predict PET images, fractional anisotropy, and mean 
diffusivity maps from multimodal MRI. Then, SC- GAN was applied on a multidi-
mensional diffusion MRI experiment for superresolution application. Experiment re-
sults were evaluated by normalized RMS error, peak SNR, and structural similarity.
Results: In general, SC- GAN outperformed other state- of- the- art GAN networks 
including 3D conditional GAN in all three tasks across all evaluation metrics. 
Prediction error of the SC- GAN was 18%, 24% and 29% lower compared to 2D 
conditional GAN for fractional anisotropy, PET and mean diffusivity tasks, respec-
tively. The ablation experiment showed that the major contributors to the improved 
performance of SC- GAN are the adversarial learning and the self- attention module, 
followed by the spectral normalization module. In the superresolution multidimen-
sional diffusion experiment, SC- GAN provided superior predication in comparison 
to 3D Unet and 3D conditional GAN.
Conclusion: In this work, an efficient end- to- end framework for multimodal 3D 
medical image synthesis (SC- GAN) is presented. The source code is also made avail-
able at https://github.com/Haoyu lance/ SC- GAN.
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1 |  INTRODUCTION

Medical image synthesis is a technique for generating new 
parametric images from other medical image modalities that 
contain a degree of similarity or mutual information. In re-
cent years, deep learning methods have been vastly used in 
medical image synthesis or medical image transformation 
tasks, which are similar from a methodological point of view. 
These tasks include MR image reconstruction from k- space,1 
image superresolution to improve image resolution from low 
resolution,2 image denoising by generating low- noise images 
from high- noise images,3 and image synthesis by generating 
one image modality from one or multiple different image 
modalities.4 Sparse reconstruction from k- space could poten-
tially save scanning time; image denoising and superresolu-
tion can benefit diagnosis by improving image quality; PET 
modality synthesis from MRI modalities can reduce the pa-
tient’s radiant dose; and synthetic, image- based data augmen-
tation can improve lesion segmentation accuracy.5- 10 In this 
work, the goal was to propose a generalized deep- learning 
algorithm for neuroimage transformation across image do-
mains (eg, between MRI and PET). Generative adversarial 
network (GAN),11 in particular, has been shown to be one of 
the effective and reliable deep- learning algorithms for image 
synthesis.12 Variants of GAN, such as conditional GAN13 and 
cycle GAN,14 have also been proposed to generalize GAN to 
different tasks and circumstances, including medical image 
synthesis.

Medical image synthesis with deep convolutional neural 
networks is often implemented using encoder- decoder net-
works, GAN, or its variants. For example, Nie et al15 pro-
posed a deep convolutional adversarial network to synthesize 
CT images from MR images. Chen et al16 implemented an 
encoder- decoder convolutional neural network to synthesize 
PET from ultralow- dose PET and MRI. Ouyang et al17 used 
conditional GAN with task- specific perceptual loss to syn-
thesize PET from ultralow- dose PET. However, using a 2D 
approach on 3D data is suboptimal and inefficient because it 
does not incorporate the 3D spatial information in the image, 
and/or because it requires multiple independent implementa-
tions of the same network along different image axes.

To the best of our knowledge, Wang et al4 first expanded 
the medical image synthesis GAN from 2D to 3D by using 
3D convolution and transposed convolution to achieve high- 
quality PET image estimation from low- dose PET images. 
The 3D network was proposed to address the limitations of 
the 2D and 2.5D networks for the purpose of image synthe-
sis. The 3D implementation of conditional GAN with no 
specific modification/addition to the network elements or its 
optimizers, however, creates an inconsistency problem due 
to the large differences in feature distributions,4 negatively 
affecting network reliability and sometimes network fails to 
converge. We anticipate that a self- attention module18 could 

ameliorate these limitations and further improve the perfor-
mance of 3D GAN.

Here, we proposed a 3D self- attention conditional GAN 
(SC- GAN) constructed as follows: First, we extended 2D 
conditional GAN into 3D conditional GAN. Next, we added 
a 3D self- attention module to generate 3D images with pre-
served brain structure and reduced blurriness in the synthe-
sized images. We also introduced spectral normalization,19 
feature matching loss9 and brain area RMS error (RMSE) 
loss to stabilize the network training process and prevent 
overfitting. To further test the effectiveness of our proposed 
method, SC- GAN was then tested on a challenging applica-
tion of multidimensional diffusion MRI superresolution, and 
displayed superior performance to conventional GANs. The 
SC- GAN network is an end- to- end medical image synthesis 
network that can be applied to high- resolution, multimodal 
input images (eg, 256 × 256 × 256). The SC- GAN source 
code is made available at https://github.com/Haoyu lance/ 
SC- GAN.

The main novelties of this technique are as follows:

(i)  It combines 3D self- attention module into 3D condi-
tional GAN to generate high- accuracy synthesis results 
with stable training process. A smooth training is then 
achieved by using of a series of stabilization techniques 
and a modified loss function; and

(ii) The SC- GAN code was tested on multiple data sets 
across different synthesis tasks and enables multimodal 
input, which can be generalized to a wide range of image 
synthesis applications.

2 |  THEORY

In this section, we introduce the 3D SC- GAN and present the 
relevant theory.

2.1 | Three- dimensional conditional GAN

For the main body of the SC- GAN, we used conditional 
GAN, which is shown to be the optimum choice of GAN 
for medical image synthesis and reconstruction with paired 
images.3,4,17,20 A conditional GAN uses the following loss 
function:

where x is the input modality image (also the conditional image 
for the conditional GAN); y is target image; and z is the noise 
vector. We also use G for generator and D for discriminator 
in the following text. As stated in Isola et al21 and Ouyang  
et al,17 noise vector z does not explicitly affect the results, and 

(1)
LcGAN (G, D) = �(x,y)

[
logD (x, y)

]
+ �(x,z)

[
log (1 − D (x, G (x, z)))

]
,

https://github.com/Haoyulance/SC-GAN
https://github.com/Haoyulance/SC-GAN
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the generator would easily learn to ignore the noise vector z. We 
followed the same implementation principle as Isola et al21 did, 
where noise vector z is no longer provided to the generator. The 
loss function is formulated as

We adopted the pix2pix network21 as the network struc-
ture of 3D conditional GAN. The objective function is as 
follows:

where L1 (G) = �(x,y)

�
‖y−G (x)‖1

�
 is the L1 loss between the 

ground truth and generated image, and � is the regularization 
term for the L1 loss.

Generator and discriminator forward and backward prop-
agate alternately until the training process reaches the Nash 
equilibrium and the network converges.22

2.2 | Three- dimensional self- attention

Self- attention allows GAN to efficiently model relation-
ships between widely separated spatial regions,18 to ensure 
that generated images contain realistic details. The image 
feature map x ∈ RC×h∗w∗d from one intermediate hid-
den layer of 3D cGAN was transformed into two feature 
spaces, f (x) = Wf x and g (x) = Wg x, to calculate attention. 
Next, the third feature space h (x) = Whx was used to calcu-
late the attention feature map. Because the purpose of using 
self- attention is to measure the similarity of each voxel to 
the target voxel, we used the similarity scores (attentions) 

as weights to calculate the weighted sum representation of 
each target voxel. The 3D self- attention module structure is 
presented in Figure 1. The similarity score (attention) was 
calculated as follows:

where � j,i is voxel j’s attention to voxel i. We then calculated the 
attention feature for each voxel j as follows:

The final output of the attention layer is

In these formulations,

where Wf, Wg, Wh, Wv are learned weight matrices by 1 × 1 × 1 
3D convolutions; C is the number of original channels; C equals 
C/8 for memory efficiency; h ∗ w ∗ d is the number of voxels 
in one feature map; and � is a learnable scalar initialized to 0.

In our network, self- attention is implemented in both the 
generator and the discriminator, as shown in Figure 2. When 
comparing our results with U- net, we added self- attention at 
both the encoder and the decoder of the generator to improve 
the synthesis performance.

(2)
LcGAN (G, D) = �(x,y)

[
logD (x, y)

]
+ �(x)

[
log (1 − D (x, G (x)))

]
.

(3)argmin
G

(
argmax

D

LcGAN (G, D) + �L1 (G)

)
,

(4)� j,i =
exp

�
Sj,i

�

∑
N
i=1

exp
�
Sj,i

� , where Sj,i = f
�
xj

�T
g
�
xi

�
,

(5)Oj = v

(
N∑

i= 1

� j,ih
(
xi

)
)

, where v (x) = Wvx.

(6)yj = �Oj + xj.

(7)Wf ∈RC×C
, Wg ∈RC×C

, Wh ∈RC×C
,

Wv ∈RC×C
, O∈RC×h∗w∗d

,

F I G U R E  1  Schematic view of the self- attention conditional generative adversarial network (SC- GAN). The first layer represents the input 
data. The attention map exploits the similarity of each pair of convolved images and combines it with the input data to generate the output of the 
self- attention module. Abbreviation: conv, convolution
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2.3 | Feature matching loss

To stabilize the training, we incorporated a feature matching 
loss.9 Feature matching loss is described as follows:

where Di is the ith layer’s feature map; T is the total number of 
layers of discriminator; and Ni is the number of elements in ith 
layer’s feature map.

Feature matching loss was added only to the generator 
loss, because only the LFM is required to be minimized at 
generator’s optimization. The objective function with feature 
matching loss is

where regularization term (�) controls the importance of the 
feature matching loss.

2.4 | Brain area RMSE loss

Error calculation was performed on brain voxels and the 
background was excluded. We calculated the RMSE between 
masked G and masked y and subsequently added the RMSE 
to the generator loss. We obtained the brain area (masky) from 

the ground- truth y; this was then used to calculate brain- area 
RMSE (B- rmse) loss as follows:

where masky (y)
i is the ith voxel of masky (y), and N is the num-

ber of total voxels. The objective function of B- rmse loss is

where � controls the regularization term for the brain- area 
RMSE loss. In the ablation study, we found that B- rmse loss 
contributed to the improvement of the network performance 
and improved the accuracy of the synthesis. Note that B- rmse 
loss is not the only loss for the generator; there are combinations 
of L1 loss, B- rmse loss, and feature- matching loss as well. The 
L1 loss focuses on the difference between whole output and the 
target, whereas B- rmse loss focuses only on the brain- area dif-
ference between output and target.

2.5 | Spectral normalization

Spectral normalization is first implemented in GAN as in 
Miyato et al,19 which is implemented in each layer g: hin → hout 
of the neural networks to normalize the weight matrix between 

(8)LFM (G, D) = �(x,y)

T∑

i= 1

1

Ni

‖‖‖Di (x, y)−Di (x, G (x))
‖‖‖1

,

(9)

argmin
G

(
argmax

D

LcGAN (G, D) + �L1 (G) + �LFM (G, D)

)
,

(10)LB−rmse (G) =

√√√√ 1

N

N∑

i= 1

(
masky (y)

i − masky (G (x))i
)2

,

(11)

argmin
G

(
argmax

D

LcGAN (G, D) + �L1 (G) + �LFM (G, D) + �LB−rmse (G)

)
,

F I G U R E  2  The SC- GAN structure with 3D self- attention module. The network structure of SC- GAN consists of two parts: generator and 
discriminator. The generator is a Unet- like eight- layer encoder- decoder with a 3D self- attention module in the middle of the encoder and decoder. 
The discriminator is a five- layer patch GAN with 3D self- attention. The self- attention module empowers both generator and discriminator in the 
adversarial learning strategy
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two connected layers. Under the definition of Lipschitz con-
tinuity,23 the Lipschitz norm ‖g‖Lip = suph� (∇g (h)), where 
� ( ⋅ ) is the spectral norm (the largest singular value).

Suppose a neural network 
f (x, W, a) = WL+1aL

(
WL

(
aL−1

(
WL−1

(
…a1

(
W1x

)
…
))))

,  
where 

{
W1, W2,…, WL+1

}
 is the weights set and {

a1, a2,…, aL

}
 is the element- wise nonlinear activation func-

tions. For the linear layer g (h) = Wh, the norm is given by

If the Lipschitz norm of the activation func-
tion ‖‖aL

‖‖Lip
 is equal to 1, based on the inequality 

‖g1 ◦ g2‖Lip ≤ ‖g1‖Lip ⋅ ‖g2‖Lip, the following bound can be 
derived:

The spectral normalization normalizes the spectral norm 
of the weight matrix Wl to obtain WSN = Wl∕�

(
Wl

)
. Thus, 

if Wl is normalized as WSN, then ‖f‖Lip ≤
∏L+ 1

l= 1
�
�
WSN

�
= 1,  

which means that ‖f‖Lip is bounded by 1. Miyato et al19 
showed the importance of Lipschitz continuity in assuring 
the boundness of statistics. We used spectral normalization in 
both the generator and the discriminator of SC- GAN.

2.6 | Regularization

To prevent overfitting, we added L2 norm regularizations to 
the generator and the discriminator, resulting in a final objec-
tive function of SC- GAN:

where �D and �G control the importance of L2 regularization. 
Because during the training process we minimize the negative 
discriminator loss for the discriminator training, this objective 
function uses −�DL2 (D) to regularize the discriminator. Note 
that L2 (D) and L2 (G) are the constraints on trainable values of 
discriminator and generator; however, L1 (G) is the L1 distance 
between generated output and ground truth.

3 |  METHODS

3.1 | Study data

Data used in the preparation of this article were obtained from 
the Alzheimer’s Disease Neuroimaging Initiative 3 (ADNI- 
3) database (http://adni.loni.usc.edu).24 We downloaded 

de- identified MRI and PET data from ADNI- 3 participants. 
All of the available data from ADNI- 3 at the time this study 
was conducted were used (ADNI- 3 is an ongoing project). 
For the PET synthesis task, 265 subjects were selected 
and randomly split into 207 training subjects and 58 test-
ing subjects. For FA and MD synthesis tasks, 497 subjects 
were selected and randomly split into 398 training subjects 
and 99 testing subjects. For MRI data, T1- weighted (T1w) 
and fluid- attenuated inversion- recovery (FLAIR) structural 
MRI and diffusion- weighted MRI were used. For PET data, 
we used amyloid PET. For PET synthesis, an input data set 
with complete T1w, FLAIR, and a target amyloid PET data 
set— of acceptable quality based on ADNI guidelines— were 
included in the analysis. For diffusion- weighted MRI synthe-
sis, an input data set with complete T1w, FLAIR, and target 

diffusion- weighted MRI data set were used (all images were 
visually inspected).

3.2 | Magnetic resonance imaging data 
collection and preprocessing

Magnetic resonance imaging of the ADNI- 3 was performed 
exclusively on 3T scanners (Siemens [Munich, Germany], 
Philips Healthcare [Amsterdam, Netherlands, and General 
Electric [Boston, MA]) using a standardized protocol. Three- 
dimensional T1w with 1- mm3 resolution was acquired using an 
MPRAGE sequence (on Siemens and Philips scanners) and fast 

spoiled gradient echo (on GE scanners). For FLAIR images, a 
3D sequence with similar resolution to the T1w images was 
acquired, providing an opportunity for accurate intrasubject 
intermodal co- registration. The MPRAGE T1w MRI scans 
were acquired using the following parameters: TR = 2300 ms,  
TE = 2.98 ms, FOV = 240 × 256 mm2, matrix = 240 ×  
256 (variable slice number), TI = 900 ms, flip angle = 9, and 
effective voxel resolution = 1 × 1 × 1 mm3. The fast spoiled 
gradient- echo sequence was acquired using sagittal slices, with 
TR = 7.3 ms, TE = 3.01 ms, FOV = 256 × 256 mm2, matrix =  
256 × 256 (variable slice number), TI = 400 ms, flip angle = 11, 
and effective voxel resolution = 1 × 1 × 1 mm3. The 3D FLAIR 
images were acquired using sagittal slices, TR = 4800 ms,  
TE = 441 ms, FOV = 256 × 256 mm2, matrix = 256 × 256 
(variable slice number), TI = 1650 ms, flip angle = 120, and 
effective voxel resolution = 1 × 1 × 1.2 mm3.

(12)‖g‖Lip = suph� (∇g (h)) = suph� (W) = � (W) .

(13)‖f‖Lip ≤
��gL+1

��Lip
⋅
��aL

��Lip
⋅
��gL

��Lip
…��a1

��Lip
⋅
��g1

��Lip
=

L+ 1�

l= 1

��gl
��Lip

=

L+ 1�

l= 1

�
�
Wl

�
.

(14)argmin
G

(
argmax

D

(
LcGAN (G, D) − �DL2 (D)

)
+ �L1 (G) + �LFM (G, D) + �LB−rmse (G) + �GL2 (G)

)
,

http://adni.loni.usc.edu
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The T1w preprocessing and parcellation were performed 
using the freely available FreeSurfer (ver. 5.3.0) soft-
ware package,25 and data processing was conducted using 
the Laboratory of Neuro Imaging pipeline system (http://
pipel ine.loni.usc.edu),26- 29 similar to Sta Cruz et al30 and 
Sepehrband et al.31 Field- corrected, intensity- normalized 
images were filtered using nonlocal mean filtering to reduce 
noise, and the outputs were used for the analysis. The FLAIR 
images for each individual were corrected for nonuniform 
field inhomogeneity using the N4ITK module32 of Advanced 
Normalization Tools (ANTs).33 The FLAIR images were 
then co- registered to T1w images using the antsIntermodal-
ityIntrasubject ANTs module.

Diffusion MRI is a quantitative modality and contains 
microstructural information about brain tissues.34- 36 Thus, it 
is challenging to predict quantitative voxel- level information 
from the structural data, which contain only relative signal 
intensity values (as opposed to per- voxel quantitative values). 
Diffusion MRI data were acquired using the following pa-
rameters: 2D echo- planar axial imaging, with a slice thick-
ness of 2mm, in- plane resolution of 2 × 2 mm2 (matrix size 
of 1044 × 1044), flip angle of 90º, 48 diffusion- weighted im-
ages with 48 uniformly distributed diffusion encodings with 
b- value = 1000 s/mm2 and 7 non- diffusion- weighted images. 
Diffusion MRI preprocessing and DTI fitting were per-
formed as described in Sepehrband et al.37,38 In brief, images 
were corrected for eddy current distortion and for involun-
tary movement using FSL TOPUP and EDDY tools.39,40 The 
DTI was then fitted to diffusion data using the Quantitative 
Imaging Toolkit.41 The FA and MD maps were used for the 
synthesis task.

3.3 | Positron emission tomography data 
collection and preprocessing

Amyloid PET analysis was performed according to the UC 
Berkeley PET methodology for quantitative measurement.42- 45  
Participants were imaged with florbetapir (18F- AV- 45; Avid 
Radiopharmaceuticals, Philadelphia, PA) or 18F- Florbetaben 
(NeuraCeq; Piramal Pharma Solutions, Mumbai, India). Six 
5- minute frames of PET images were acquired 30- 60 minutes 
following injection. Each extracted frame was co- registered 
to the first extracted frame and then combined into a single 
image, which lessened subject motion artifacts. The com-
bined image had the same image resolution as did the original 
PET image (2- mm isotropic voxels). All PET images were 
co- registered on T1w MRI. Quantitative measurement was 
performed based on the standard uptake value ratio (SUVR). 
The brain mask, which was obtained from T1w analysis, 
was applied on co- registered T1w, FLAIR, and PET images. 
Examples of a set of input and target images are presented in 
Figure 3.

3.4 | Implementation, baseline models

To rigorously assess the performance of SC- GAN, we have 
compared it with current, well- developed medical image 
synthesis networks, including 2D cGAN, 3D cGAN, and 
attention cGAN (Att cGAN). The 2D cGAN was adopted 
from Ouyang et al,17 who proposed the technique for 
the PET synthesis task. The 3D cGAN was initially pro-
posed by Wang et al4 for PET image synthesis from low- 
dose PET images. Attention cGAN was designed based 
on the attention module proposed by Oktay et al,46 who 
incorporated the 3D attention module in the U- net archi-
tecture for applying pancreas segmentation (assisted by 

F I G U R E  3  Multimodal (multichannel) input. Examples of 
different neuroimaging data from single individual are presented. T1- 
weighted (T1w) and fluid- attenuated inversion recovery (FLAIR) were 
used as input for different synthesis tasks. For each the study tasks, 
a different target was used, shown as outputs 1- 3: mean diffusivity 
(MD), fractional anisotropy (FA), and amyloid- beta (A�) PET. Data 
were preprocessed and co- registered (see section 2 for details) and are 
shown from three anatomical views (from left to right: axial, coronal, 
and sagittal)

http://pipeline.loni.usc.edu
http://pipeline.loni.usc.edu
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the image synthesis task). The same 3D attention module 
was also adopted by Liu et al47 in the CycleGAN medical 
image synthesis network. To produce a fair comparison, 
we incorporated the aforementioned 3D attention module 
in conditional GAN (referred to here as Att cGAN) and 
compared it with SC- GAN. The main difference between 
Att cGAN and SC- GAN is that Att cGAN uses gated at-
tention46 at each skip connection of the generator, whereas 
SC- GAN uses self- attention in the down- sampling and 
up- sampling paths of the generator as well as in the dis-
criminator. Another difference between the two techniques 
is that gated attention has two different inputs (ie, input 
features and gating signal [Supporting information Figure 
S1]), whereas self- attention contains only input features. 
All three baseline models and SC- GAN were implemented 
using TensorFlow (1.12.2) and deployed training on an 
NVIDIA GPU cluster (Santa Clara, CA) equipped with 
eight V100 GPUs (Cisco UCS C480 ML, San Jose, CA). 
All four sets of results are used to analyze and compare 
different networks’ performances.

3.5 | Training and testing

The PET and DTI were up- sampled to have the same 
resolution as the T1w and FLAIR (ie, 256 × 256 × 256). 
Synthesis results generated by convolutional neural net-
works could be improved by adding an intensity normali-
zation preprocessing step before training, but the synthesis 
results are robust for the different choices of the normaliza-
tion methods.48 We implemented Z- score normalization for 
all four tasks, then applied min- max rescaling to scale the 
voxels’ intensity from between 0 to 1 before the training. 
The T1w and FLAIR were used as inputs for MD, FA, and 
PET synthesis tasks.

The 2D cGAN was implemented similar to Ouyang et al.17 
The 3D cGAN was implemented similar to Wang et al,4 and 
Att cGAN was implemented similar to Oktay et al46 and 
Liu.47 We performed 5- fold cross- validation during the hy-
perparameter tuning phase for all four networks to obtain the 
optimal hyperparameters.

For SC- GAN, the optimal result was ob-
tained with the following hyperparameters: 
� = 200, � = 200, � = 20, �G = 0.001, �D = 0.001, and batch 
size = 1. The learning rate began at 0.001, and cosine decay 
was used to continuously shrink the learning rate during the 
training process. For 2D cGAN, the hyperparameters were 
� = 100, �G = 0.01, �D = 0.01, batch size = 4, and learn-
ing rate = 0.0002; for 3D cGAN, the hyperparameters were 
� = 200, �G = 0.001, �D = 0.001, batch size = 1, and learning 
rate = 0.002; and for Att cGAN, the hyperparameters were 
� = 200, �G = 0.001, �D = 0.001, batch size = 1, and learning 
rate = 0.001.

3.6 | Evaluation criteria

Three image- quality metrics were used to evaluate the 
performance of the synthesis task: normalized RMSE 
(NRMSE), peak SNR, and structural similarity. The 
NRMSE reflects the normalized error without being af-
fected by the range of the voxel values. Thus, NRMSE 
could be used to compare the performances of the network 
on different tasks directly. To enable a direct comparison 
between 2D cGAN and 3D networks, we evaluated the 3D 
output of the 2D network directly.

3.7 | Ablation study

To analyze the contribution of each component of SC- GAN, 
we performed an ablation study and evaluated results on the 
test data set of PET synthesis task. Five ablation tests were 
conducted for the proposed network: SC- GAN (1) without 
self- attention module, (2) without adversarial learning, (3) 
without brain area RMSE loss, (4) without spectral normali-
zation, and (5) without feature matching loss.

3.8 | Evaluating synthesized PET

A secondary analysis was performed to compare SC- GAN re-
sults against ground- truth PET. Amyloid- b (A�) uptake was 
estimated from PET and synthesized PET. The A� uptake 
values were then compared across clinically relevant regions. 
Although the focus of the study was primarily on proposing 
and optimizing a neuroimage synthesis technique, this evalu-
ation was performed to examine whether PET synthetization 
from MRI data can substitute for actual PET imaging. The 
SUVR of the A� was calculated across subcortical and cor-
tical regions of 10 randomly selected individuals from the 
ADNI- 3 cohort. The SUVR values for 110 regions per partici-
pant were compared between PET and synthesized PET. The 
SUVRs across these regions of interest were derived using the 
Desikan- Killiany atlas, which was parcellated on T1w images 
using the FreeSurfer pipeline, as explained in the section 3.2. 
The PET images used for training were normalized using the 
min- max normalization approach; thus, test PET images were 
also normalized using the same approach before comparison.

3.9 | Superresolution application

The utility of SC- GAN in a practical application was tested for 
superresolution of multidimensional diffusion MRI (MUDI) 
as part of the Computational Diffusion MRI Workshop 
2020.49,50 multidimensional diffusion MRI enables additional 
sensitivity and specificity toward tissue microstructure, but 
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is time- consuming to obtain. As such, a computational tech-
nique that allows reliable superresolution of accelerated low- 
resolution MUDI would be valuable. The challenge consists 
of two tasks: isotropic down- sampled image superresolution 
and anisotropic down- sampled image superresolution. As for 
the acquisition protocol of the data set from the challenge, 
each data set contains 1344 volumes distributed over four b- 
shells b ∈{500, 1000, 2000, 3000} s/mm2 with 106 uniformly 
spread directions; three TEs TE ∈ {80, 105, 130} ms; 28 TIs 
TI ∈ [20, 7322] ms; TR = 7.5 seconds; resolution = 2.5 mm 
isotropic; FOV = 220 × 230 × 140 mm; SENSE = 1.9; half- 
scan = 0.7; multiband factor 2; and a total acquisition time of 
52 minutes. Our proposed solution was developed based on 
SC- GAN, with additional DTI acquisition protocol informa-
tion as an adaptive manner to superresolve the low- resolution 
DTI image to a specific resolution of DTI image. Here we 
describe the method we developed for this challenge and the 
comparison experiments using different backbone modules 
among 3D Unet, 3D cGAN, and SC- GAN.

In our proposed method, adaptive instance normalization 
(AdaIN),51 was used to incorporate acquisition protocol infor-
mation. Protocol information was added as a one- dimensional 
vector with six elements, including gradient- encoding direc-
tions (three elements: x, y, and z), b- value, TE, and TI. We as-
sumed that each protocol vector had a one- to- one mapping to 
each volume of the MUDI. Thus, adding protocol information 
to the discriminator could potentially strengthen the discrim-
inator during the adversarial process and force the generator 
to minimize prediction error. The AdaIN method was added 
to each feature map of the discriminator as follows:

where x is the feature map of the discriminator; � (x) is the mean 
and � (x) is the SD of the feature maps, computed across the spa-
tial dimension independently for each sample and feature chan-
nel; and y is the protocol vector from the vector space and trained 
affine transformations map protocol vector to affine (y). The val-
ues of � and � were then extracted to normalize the feature maps.

Training was performed using a batch size of 4 and a learn-
ing rate of 0.001 with cosine decay. Four MUDI image data 
sets each with image size 41 × 46 × 28 × 1344 were used for 
training data, and 1 subject with the same image size was used 
for validation data. The training patch we used is the indepen-
dent volume of the subsampled MUDI image with size 41 × 46 
× 28, which provides the requisite sample size to train a deep 
neural network. The target resolution was 82 × 92 × 56 We fol-
lowed a progressive training strategy in two steps: (1) Train the 
first SC- GAN to superresolve the low- resolution data to high- 
resolution data, and (2) train the second SC- GAN to refine the 
reconstructed high- resolution data from the previous step to 
further reduce the mean squared error.

To facilitate a fair comparison between SC- GAN and 
other GAN models, we replaced SC- GAN with 3D Unet and 
3D cGAN using this presented method.

4 |  RESULTS

The learning curves of the GANs that were used for the 
PET, FA, and MD synthesis tasks are presented in Figure 4. 
Learning curves demonstrate the performance of different 
networks across training epochs. The average performance 
when applying the trained network on the test data is pre-
sented in Table 1, and the qualitative assessments are pre-
sented in Figure 5.

4.1 | Quantitative assessment

The learning curves demonstrate that all networks were suc-
cessfully optimized, reaching a plateau within the range of 
the study epochs (Figure 4). The 3D cGAN and SC- GAN 
networks showed smooth and stable patterns in their opti-
mization curves, whereas 2D cGAN and Att cGAN dem-
onstrated a degree of fluctuation during their learning. The 
learning- curve pattern across tasks was similar in structural 
similarity and NRMSE. However, the peak SNR was slightly 
different across tasks, with PET tasks resulting in the highest 
peak SNR (Figure 4).

Regardless of the evaluation metric or synthesis task 
used, SC- GAN outperformed other networks, resulting in 
the lowest NRMSE and the highest peak SNR and structural 
similarity of any technique (Table 1). The NRMSE results 
showed that SC- GAN’s error was 18%, 24%, and 29% lower 
than that of 2D cGAN across FA, PET and MD tasks, re-
spectively. Across all tasks, the 2D network produced the 
lowest performance. We also displayed difference maps for 
the FA and MD synthesis task in Figure 5. To understand 
the synthesis performance in various brain regions, we mea-
sured the NRMSE of the FA task results in white matter, 
gray matter, and CSF regions using anatomical masks gen-
erated by ANTs.33 The whole- brain NRMSE (mean/SD) of 
SC- GAN results was 0.078/0.012, and white matter, gray 
matter, and CSF NRMSEs were 0.088/0.012, 0.062/0.01 and 
0.073/0.014, respectively.

All 3D networks outperformed the 2D network. We com-
pared the 2D version of SC- GAN with other networks and 
displayed the results in Supporting Information Table S1 to 
highlight the importance of incorporating 3D information 
into deep learning networks. The SC- GAN outperformed 3D 
cGAN and Att cGAN in all three tasks across all evaluation 
metrics. The increased performance of SC- GAN was more 
evident in the PET task, followed by smaller performance in-
creases in the FA and MD tasks.

AdaIN (x, y) = � (affine (y))

(
x − � (x)

� (x)

)
+ � (affine (y)) ,
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The ablation test showed that the major contributors to 
SC- GAN’s improved performance were the adversarial learn-
ing and the self- attention module, followed by the B- rmse and 

spectral normalization modules (Figure 6 and Table 2). Spectral 
normalization and feature matching contributed to the stabiliza-
tion of the SC- GAN training loss at multiples scales.

FIGURE 4  Learning- curve SC- GANs compared with other synthesis GANs across different tasks. Plots demonstrate learning curves of four 
convolutional neural networks that were evaluated in this study: 2D GAN, 3D GAN, 3D conditional GAN with attention gate (Att cGAN), and SC- GAN. 
The T1w and FLAIR data were used for three tasks: (1) synthesizing A�PET (n = 242, first column); (2) synthesizing FA (n = 480, second column); and 
(3) synthesizing MD (n = 480, third column). Three different evaluation metrics were used: First row shows normalized RMS error (NRMSE); second 
row shows peak SNR (PSNR); and third row shows structural similarity (SSIM). Note that all networks reached their plateau around epoch 20

Synthesis task 
(target image) Method

NRMSE mean 
(± SD)

PSNR mean 
(± SD)

SSIM mean 
(± SD)

PET 2D cGAN 0.100 ± 0.028 29.80 ± 1.59 0.948 ± 0.010

3D cGAN 0.099 ± 0.022 29.69 ± 1.96 0.950 ± 0.012

Att cGAN 0.086 ± 0.024 31.03 ± 2.34 0.955 ± 0.014

SC GAN 0.076 ± 0.017 32.14 ± 1.10 0.962 ± 0.008

FA 2D cGAN 0.100 ± 0.014 29.29 ± 1.23 0.948 ± 0.008

3D cGAN 0.089 ± 0.015 30.39 ± 1.47 0.955 ± 0.008

Att cGAN 0.086 ± 0.014 30.65 ± 1.41 0.956 ± 0.008

SC GAN 0.082 ± 0.013 31.00 ± 1.12 0.959 ± 0.007

MD 2D cGAN 0.135 ± 0.019 26.98 ± 1.38 0.949 ± 0.010

3D cGAN 0.121 ± 0.018 27.93 ± 1.42 0.953 ± 0.010

Att cGAN 0.108 ± 0.014 28.74 ± 1.19 0.954 ± 0.009

SC GAN 0.096 ± 0.014 29.75 ± 1.25 0.963 ± 0.009

Note: This table shows statistic values of NRMSE, PSNR, and SSIM among test images after the networks 
reached the plateau and the hyperparameters were optimized. Statistically significant results are highlighted in 
bold font.

T A B L E  1  Comparison among different 
networks
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The time costs of SC- GAN and baseline models are as 
follows: 2D cGAN: 40 minutes per epoch and 800 minutes 
to reach plateau; 3D cGAN: 60 minutes per epoch and 1200 
minutes to reach plateau; Att cGAN: 65 minutes per epoch 
and 1300 minutes to reach plateau; and SC- GAN: 65 minutes 
per epoch and 1300 minutes to reach plateau.

4.2 | Qualitative assessment

Figure 5 compares the studied networks qualitatively. To 
assess the quality of 3D synthesis images, results were pre-
sented in different planes: axial images for PET synthesis 
(Figure 5A), coronal images for FA synthesis (Figure 5B), 

F I G U R E  5  Qualitative assessment of 
three tasks. Images are the result of applying 
different GANs on T1w and FLAIR input 
images to predict A� PET (A), FA (B), MD 
(C), and absolute value error maps between 
synthesis results and target for FA (D) and 
MD (E) tasks. Target PET/FA/MD are also 
illustrated for comparison. Target image is 
normalized to the [0 1] range for training, 
and an equal color range of [0 1] is used 
for visualization. Note that SC- GAN was 
able to synthesize the most similar results 
in comparison with other networks. In the 
FA task (B), a 2D network demonstrated 
continuous distortion (red arrow), and 3D 
cGAN resulted in an oversmoothed image 
(see blue arrow showing partial- volume 
effect between fiber bundles of cingulum 
and corpus callosum). Attention cGAN 
failed to capture high- intensity FA across 
the white matter (yellow arrows). Green 
dotted circle shows that, unlike other 
networks, SC- GAN was able to capture 
brainstem details. In the MD task (C), 2D 
generated artificial sharp boundaries (red 
arrow) and 3D cGAN resulted in a large 
amount of striping artifact (blue arrow). 
D, The absolute value error maps for 
FA synthesis task. E, The absolute error 
maps for MD synthesis task. High error 
rates at brain boundaries are related to 
the regions affected by the EPI distortion 
and caused by imperfect brain masks used 
in the experiment. The figure shows that 
the result generated by SC- GAN has the 
lowest intensity error compared with other 
networks’ results
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and sagittal images for MD (Figure 5C). Because 2D cGAN 
was trained on the sagittal images, the sagittal view of the 
synthesized result returned the best result for the 2D network 

(eg, MD task) (Figure 5C), whereas the axial and coronal 
views showed visual discontinuity and distortion (eg, PET 
and FA tasks) (Figure 5A,B). Even in the sagittal view, 2D 
GAN generated sharp artificial boundaries (eg, ventricle 
boundaries in Figure 5C). The 3D networks did not suffer 
from either of these shortcomings, returning stable results 
across image dimensions.

The SC- GAN results were also visually closest to the 
ground- truth data in comparison with those of other networks. 
In particular, SC- GAN was able to capture certain image de-
tails that were hidden to other networks. For example, struc-
tural boundaries at the brainstem in the FA images were 
captured by SC- GAN (green dotted circle in Figure 5B), but 
these details were smoothed out by other networks. Cingulum 
bundle (blue arrows, Figure 5B) and superficial white matter 
(red arrow, Figure 5B) were not generated with 3D cGAN and 
2D cGAN, respectively; however, these details were success-
fully generated by SC- GAN. We also noticed that Att cGAN 
failed to capture high- intensity FA across white matter (yellow 
arrows, Figure 5B), whereas SC- GAN demonstrated a similar 
intensity profile to the ground truth. It should be noted that 
SC- GAN also did not generate an exact match to the ground 
truth; artificial and incorrect features were still observed. 
Results from MD synthesis (Figure 5C) also showed that SC- 
GAN resulted in the generation of a map closer to the ground 
truth than those of other networks, and the map contained a 
higher degree of detail and fewer artifacts.

We noticed a significant correlation between PET  
and synthesis PET across subcortical and cortical regions 
(Figure 7; P < .0001 across all 10 tested participants). The re-
sults were consistent across all test data, with correlation co-
efficients ranging from r = 0.67 to r = 0.95 (all at P < .0001). 
Although synthesis PET SUVR values were significantly 
correlated with those of ground- truth PET, we observed that 
the error rate was higher when the SUVRs of the PET images 
were high. These SUVR ranges correspond to regions with 
high clinical value, reflecting neurodegenerative pathology 
(high A� uptake).

F I G U R E  6  Ablation study on test data across modules of SC- 
GAN. The SC- GAN with and without different network modules were 
assessed on the A� PET synthesis task, and learning curves across 
different evaluation criteria are presented here. Plots demonstrate 
NRMSE, PSNR, and SSIM. The self- attention module appeared to 
have the highest contribution to the achieved improvement, followed 
by spectral normalization and non– brain- loss function exclusion

Ablation study
NRMSE mean  
(± SD) PSNR mean (± SD)

SSIM mean 
(± SD)

No self- attention 0.118 ± 0.016 28.34 ± 1.200 0.939 ± 0.011

No adversarial learning 0.102 ± 0.018 29.72 ± 1.583 0.947 ± 0.012

No brain- area RMS 
error loss

0.092 ± 0.017 30.27 ± 1.627 0.953 ± 0.010

No spectral 
normalization

0.080 ± 0.017 31.57 ± 1.203 0.957 ± 0.010

No feature matching 0.078 ± 0.019 32.03 ± 1.174 0.960 ± 0.013

SC- GAN 0.076 ± 0.017 32.14 ± 1.100 0.962 ± 0.008

Note: This table shows the ablation study of different components of SC- GAN on the A� PET synthesis task.

T A B L E  2  Ablation study of SC- GAN
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4.3 | Application: MUDI superresolution

Figure 8 summarizes the performance of three deep neural 
network techniques for the application of MUDI superreso-
lution: 3D Unet, 3D cGAN, and SC- GAN. We measured 
the mean squared error between output and target with the 
brain mask. The SC- GAN performance was superior to that 
of 3D Unet and 3D cGAN. The outputs of the experiments 
had average mean squared errors of 2.52 for 3D Unet, 2.41 
for 3D cGAN, and 2.15 for SC- GAN. The inference time of 
these three networks on the test data was less than 3 min-
utes. The learning curve (Figure 8B) also demonstrated that 
SC- GAN can reach a lower mean RMSE across 1344 vol-
umes compared with 3D Unet and 3D cGAN. The absolute 
difference maps of the generated images (one volume out-
put of 1344 volumes; Figure 8A) showed that areas with 
high error rates are related to image regions affected by EPI 
distortion (eg, the top of the axial slice), which are therefore 
more challenging to predict using GAN. From a qualitative 
perspective, SC- GAN was also superior to 3D Unet and 3D 
cGAN, with lower quantities of noise and higher spatial 
homogeneity.

5 |  DISCUSSION

Here we presented an efficient end- to- end framework for 
multimodal 3D medical image synthesis (SC- GAN) and vali-
dated its usefulness in PET, FA, and MD synthesis applica-
tions. To design and optimize the network, we added a 3D 
self- attention module to conditional GAN (cGAN), which 
models the similarity between adjacent and widely separated 
voxels of a 3D image. We also used spectral normalization 
and feature matching to stabilize the training process and 
ensure that SC- GAN could generate image details. The SC- 
GAN was designed to handle multimodal (multichannel) 3D 
images as inputs. We showed that SC- GAN significantly out-
performed state- of- the- art techniques, enabling reliable and 
robust deep learning– based medical image synthesis for a 
wide range of applications.

Recent work has shown that 3D GAN can be used to 
improve the accuracy of medical imaging synthesis.4,47 To 
evaluate the benefits of 3D implementation, we compared the 
performances of 2D cGAN and 3D networks. We observed 
intensity discontinuity and distortion in the synthesis results 
of 2D cGAN, highlighting the importance of using 3D neu-
ral network implementation for medical image applications. 
To rigorously assess SC- GAN, two existing 3D synthesis 
methods (3D cGAN and Att cGAN) were compared with SC- 
GAN. The SC- GAN technique achieved the highest perfor-
mance and most stable learning curves.

Although adding the attention gate module improved 3D 
cGAN, the technique nevertheless returned less accurate re-
sults than SC- GAN, which uses the self- attention module. 
The Att cGAN method used the attention gate that filters the 
features propagated through the skip connections to enhance 
the feature maps in the up- sampling phase. Because the train-
ing process of Att cGAN is also guided by the attention gate 
module, the network performance was superior to that of 3D 
cGAN. Qualitative results also showed that Att cGAN can 
generate better results compared with 3D cGAN.

The self- attention feature provided the SC- GAN network 
with context awareness, granting an additional degree of 
freedom to the synthesis process. Spectral normalization was 
used to stabilize the training process and prevent the train-
ing from collapsing. The ablation experiment conducted in 
this study, meanwhile, showed that the self- attention module 
contributed most to the improvement of 3D cGAN. Previous 
studies have shown that the self- attention module can be ef-
fective in other medical image analysis applications. Zhao 
et al20 combined an object recognition network and self- 
attention- guided GAN into a single training process to han-
dle the tumor detection task, whereas Li et al3 incorporated 
self- attention and autoencoder perceptual loss into a convolu-
tional neural network to denoise low- dose CT.

F I G U R E  7  Correlation between PET and synthesis PET. Plot 
shows the correlation between A� standard uptake value ratio (SUVR) 
across subcortical and cortical regions of 10 test participants (each 
color represents regions of each participants). The PET images 
that were used for training were normalized using the min- max 
normalization approach. Therefore, test PET images were also 
normalized using the same approach before comparison. Note that on 
the region with high load of A� (shown with red arrow), the synthesis 
error is higher, suggesting that synthesis PET could not substitute PET 
imaging
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Three- dimensional medical image processing tasks often 
face dimensionality challenges, and GAN is no exception.52 
For example, 3D cGAN resulted in oversmoothed images in 
the FA synthesis task and created a large quantity of striping 
artifacts that blurred the image edges in PET and MD synthe-
sis tasks. The SC- GAN method uses a series of regularization 
and stabilization techniques, namely, feature matching loss, 
spectral normalization loss, L1 loss, and brain- area RMSE 
loss. This permits stable training on high- dimensional input 
data (eg, the input image size of N × 256 × 256 × 256 × 2 that 
was used in this study).

It should be noted that while neuroimaging synthesis has 
dramatically improved over the past 5 years, our qualitative 
results suggest that synthesis PET cannot substitute for PET 
imaging yet, as pathological and clinically relevant molecular 
information revealed by PET may not be detected by synthe-
sizing PET obtained from MRI data (which primarily con-
tains structural information). This limitation does not dampen 
the significance of medical image synthesis, but rather calls 
for careful design/application when image synthesis is used. 
For example, studies have shown that a reliable transforma-
tion can be achieved when incorporating low- dose PET as 
synthesis input.4,16,17

The application of SC- GAN for MUDI superresolu-
tion showed that SC- GAN has the potential to be easily 
extended to other deep learning– based 3D medical image 

transformation and reconstruction tasks. The SC- GAN back-
bone outperformed other 3D GAN and Unet networks, result-
ing into a reliable MUDI superresolution that could shorten 
acquisition time or improve image quality through careful use 
of the redundant information in high- dimensional images. 
For the superresolution application, we lacked the additional 
acquisition protocol data required to perform further experi-
ments and analyses. Correlation analysis between acquisition 
protocol data and DTI superresolution performance could be 
a future study.

Computational cost is the main limitation of SC- GAN; it 
requires lengthy training and heavy computational resources, 
such as GPU memory. Sparse attention matrix computation 
could be a potential solution. A future research direction 
could focus on generalizing SC- GAN, such as by adopting 
knowledge distillation mechanism into SC- GAN. As for the 
DTI image synthesis tasks, target images were normalized to 
between 0 and 1 for stable training in the experiments, but 
given the quantitative nature of the DTI metrics, the nor-
malization negatively affects the quantitative value of the 
metrics. Therefore, for synthesizing quantitative modalities, 
the normalization step should be avoided. Our in- house test 
suggested no normalization dependency in SC- GAN (results 
are not presented); therefore, the normalization was included 
in the DTI experiment for methodology consistency among 
experiments.

F I G U R E  8  Qualitative assessment 
of MUDI superresolution. A, Images 
show axial slices of outputs of 3D Unet, 
3D cGAN and SC- GAN, and absolute 
difference map between output and target 
for each of them. Axial slice of input (size 
41 × 46 × 28) and target (size 82 × 92 × 56) 
data are also presented here. B, Learning 
curves on the validation data of the second 
step of progressive training



14 |   LAN et AL.

6 |  CONCLUSIONS

The focus of this work was on enabling multimodal 3D neu-
roimage synthetization with GAN. The proposed method 
(SC- GAN) was evaluated on the challenging tasks of PET 
and DTI synthesis as well as MUDI superresolution, to aid in 
rigorous optimization of the network. The SC- GAN method 
was designed and assessed to enable robust and stable mul-
timodal 3D neuroimaging synthesis. Future work could ex-
plore other SC- GAN applications; for example, SC- GAN 
may be used to combine MRI with low- dose PET to improve 
the efficacy of existing techniques.16,17 We also expect that 
neuroimaging techniques with high numbers of repetitions, 
such as functional and diffusion MRI,53 may benefit from 
SC- GAN; this is a future direction of our work.
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SUPPORTING INFORMATION
Additional Supporting Information may be found online in 
the Supporting Information section.

FIGURE S1 Attention gate flow chart that was implemented 
in the baseline model (Att cGAN). There are two inputs for 
attention gate: gating signal (G), which is the coarser feature 
map, and input feature map (F), which is the finer feature 
map. As for Att cGAN, attention gate is incorporated at skip 
connection using the coarse feature map from up- sampling 
path of generator (in Figure 2) as gating signal (G) and the 
finer feature map from down- sampling path of generator as 
input feature map
TABLE S1 Performance comparison of 2D SC- GAN with 
other networks. Note: The results generated by 2D SC- GAN 
have discontinuity and distortion issue as the results gener-
ated by 2D cGAN, which is the main reason of their inferior 
performance compared with 3D networks
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